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1 Introduction

Non(anti)commutative field theories emerge naturally as low energy limits of strings in a

background where a constant Neveu-Schwarz two form and/or a Ramond-Ramond two-

form are turned on [1–4]. In the supersymmetric case, the appearance of the RR flux

Fαβ modifies the superspace geometry through the appearance of a nontrivial anticom-

mutator {θα, θβ} = Fαβ [3–8]. The effect on field theories defined in nonanticommutative

(NAC) superspace is that the multiplication among superfields is no longer commutative

but described by the so-called ∗-product. As a result, supersymmetry is in general partially

broken from N = 1 to N = 1/2. For extended supersymmetries suitable deformations can

be realized which break less supersymmetry [9].

In the recent past quantum properties of NAC theories have been investigated. In par-

ticular, renormalizability is one of the more interesting issues since the partial breaking of

supersymmetry could affect the ordinary boson-fermion cancellation leading to a worsening

of the UV behavior of the theory.
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For the deformed WZ model loop calculations have been performed both in super-

space [10–12] and in components [13]. They reveal that renormalizability is lost already at

one loop but it can be restored by adding new couplings in the classical action depending

on the deformation parameter. This modification is then sufficient to make the theory

renormalizable at all orders [14].

The same analysis can be carried on also for deformed gauge theories (a first attempt

can be found in [15]). In [16], for SU(N )⊗U(1) SYM theory with massive chiral matter in

the adjoint representation of the gauge group we have found a general action for the pure

gauge sector which is N = 1/2 supergauge invariant and one-loop renormalizable. It differs

from the one obtained from the ordinary action where we trade products for ∗-products

by the addition of new couplings depending on the deformation parameter. They span

the spectrum of all possible couplings allowed by supergauge invariance. Our results are

confirmed by a similar analysis done in components [17]. General arguments in support

of renormalizability for N = 1/2 gauge theories coupled to non-interacting matter can be

found in [18].

It is important to stress that in all theories investigated so far UV divergences are

always logarithmic. This suggests that under NAC deformations supersymmetry is in

general softly broken.

The previous results for super-Yang-Mills theories concern primarily the gauge sector.

However, for a complete proof of the quantum consistency of the theories one should analyze

also the matter sector. A preliminary discussion on theories with non-interacting massive

matter can be found in [16], whereas a systematic attempt in this direction has been carried

on recently in [19].

Working in components in the WZ gauge, the authors of [19] have investigated the

structure of one-loop divergences in all sectors of the theory. When massive matter is

present in the fundamental and/or in the adjoint representation of SU(N ) ⊗ U(1), both

the gauge and matter sectors can be made finite by a suitable generalization of the clas-

sical action which contains new deformation-dependent couplings in addition to the ones

obtained by generalizing products to ∗-products.

For chiral matter in the adjoint representation one can also add a superpotential term.

In [19] a deformed SYM theory with cubic superpotential has been investigated. The au-

thors have found that the cancellation of one-loop divergences in the matter sector requires

a modification of the classical superpotential which breaks supersymmetry completely. This

is due to the following mechanism: According to the non-renormalization theorem, the

renormalization of the chiral coupling is induced by the renormalization of the (anti)chiral

superfields. On the other hand, abelian and non-abelian fields renormalize differently, so

that in a SU(N ) ⊗ U(1) theory a generalization of the superpotential which assigns dif-

ferent couplings to the abelian and non-abelian sectors is necessary in order to render the

theory renormalizable. While in the ordinary case this is consistent with supersymmetry,

in the NAC case one can easily realize that the generalized superpotential is no longer

supersymmetric. Therefore, it seems that in NAC SYM theories interacting chiral matter

can be consistently added at quantum level only at the price to give up supersymmetry

completely. We will call it the “superpotential problem”.

– 2 –
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In particular, it follows thatN = 4 SYM does not seem to possess a renormalizableN =

1/2 deformation. On the other hand, string theory would provide a natural interpretation

of this theory as the low energy dynamics of a set of D3-branes in a constant graviphoton

background. Therefore, the absence of N = 1/2 generalizations of N = 4 SYM should be

understood also from a string theory point of view.

As a first step it is then important to investigate whether the negative results of ref. [19]

find definitive confirmation or they can be overpassed. To this end, in a superspace setup

we reconsider the problem of quantizing NAC SYM theories with a cubic superpotential.

We start from the natural ∗-generalization of the ordinary superspace action for N = 1

SYM with cubic superpotential for a single (anti)chiral field. First of all, we rephrase the

conclusions of [19] in superspace language by arguing that the request for the theory to be

renormalizable and supergauge invariant would force the appearance of terms in the action

which would be manifestly non-supersymmetric.

Successively, we prove that a suitable generalization of the action can be found which

solves the superpotential problem. It is obtained by assigning a different coupling constant

to the quadratic term for the abelian matter superfields. The modification is done in

a manifestly N = 1/2 supersymmetric and supergauge invariant way and has a double

effect: On one side, the kinetic terms for the abelian and non-abelian superfields appear

with a different normalization. The relative coupling can then be chosen so to absorb

part of the divergences and tune the renormalization of the abelian fields with the one

for the non-abelians. In so doing, a renormalizable, N = 1/2 and gauge invariant cubic

superpotential can be added. On the other side, it changes the gauge-matter coupling in

vertices where abelian (anti)chirals are present. As a crucial consequence, the evaluation

of one-loop diagrams reveals that only N = 1/2 susy and supergauge invariant divergent

structures get produced. Therefore, a one-loop renormalizable action is obtained by adding

all possible N = 1/2 supergauge invariant couplings allowed by dimensional analysis. Its

explicit expression is given in eq. (5.23).

In this paper we construct the renormalizable action by performing a dimensional and

diagrammatic analysis of divergences, without entering the details of the calculations. The

paper is organized as follows: In section 2 we review the NAC superspace and the gener-

alization of the background field method already discussed in [16]. In sections 3 and 4 we

discuss the quantization of the NAC SYM model obtained by promoting ordinary products

to be ∗-products in the action for SU(N )× U(1) gauge superfields coupled to chiral mat-

ter in the adjoint representation, in the presence of a cubic superpotential. We formulate

the superpotential problem in the language of superspace and propose our solution which

requires introducing a different coupling constant in front of the abelian quadratic action.

In section 5 we perform a general selection of all possible divergent structures which might

appear at loop level and propose the most general one-loop renormalizable gauge-invariant

action. Finally, in section 6 we prove that all divergences can be multiplicatively renor-

malized while preserving gauge-invariance. Finally, section 7 contains some conclusions

and perspectives. An appendix follows where we derive the Feynman rules necessary for

perturbative calculations.
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2 The general setting

We consider the N = (1
2 , 0) NAC superspace spanned by nonanticommutative coordinates

(xαα̇, θα, θ̄α̇) satisfying

{θα, θβ} = 2Fαβ {θ̄α̇, θ̄β̇} = 0 [xαα̇, xββ̇] = [xαα̇, θβ] = [xαα̇, θ̄β̇] = 0 (2.1)

where Fαβ is a 2 × 2 symmetric, constant matrix. This algebra is consistent only in

euclidean signature where the chiral and antichiral sectors are totally independent and not

related by complex conjugation.

The class of smooth superfunctions on the NAC superspace is endowed with the NAC

but associative product

φ ∗ ψ ≡ φe−
←−
∂ αF

αβ
−→
∂ βψ = φψ − φ

←−
∂ αF

αβ−→∂ βψ −
1

2
F2∂2φ∂2ψ (2.2)

where F2 ≡ FαβFαβ . (Anti)chiral superfields can be consistently defined by the constraints

Dα̇ ∗ φ = Dα ∗ φ = 0 1.

Supersymmetric Yang-Mills theories in NAC superspace have been extensively dis-

cussed in ref. [16]. As in the ordinary case, they are defined in terms of a scalar prepotential

V ≡ VAT
A in the adjoint representation of the gauge group. Being the theory in euclidean

signature, V has to be pure imaginary, V † = −V .

The supergauge transformations for V are

eV∗ → eV
′

∗ = eiΛ∗ ∗ e
V
∗ ∗ e

−iΛ
∗ (2.3)

where Λ,Λ are chiral and antichiral superfields, respectively.

Supergauge covariant derivatives in superspace can be defined in the so-called gauge

chiral or gauge antichiral representation [20]. As discussed in [16] in the NAC case the

two descriptions are no longer equivalent, especially when the construction of supergauge

invariant actions is under concern. It turns out that the gauge antichiral representation is

definitely preferable. We then define supergauge covariant derivatives as

∇A ≡ (∇α,∇α̇,∇αα̇) = (Dα , e
V
∗ ∗Dα̇ e

−V
∗ , − i{∇α,∇α̇}∗) (2.4)

They can be expressed in terms of ordinary superspace derivatives and a set of connections,

∇A ≡ DA − iΓA, where

Γα = 0 , Γα̇ = ieV∗ ∗Dα̇ e
−V
∗ , Γαα̇ = −iDαΓα̇ (2.5)

The field strengths are then defined as ∗-commutators of supergauge covariant derivatives

W α̇ = −
1

2
[∇α,∇αα̇]∗ , W̃α = −

1

2
[∇

α̇
,∇αα̇]∗ (2.6)

1We use chiral representation [20] for supercharges and covariant derivatives. In particular, we define

Dα = ∂α + iθ
α̇
∂αα̇ and Dα̇ = ∂α̇.
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and satisfy the Bianchi’s identities ∇α ∗ W̃α +∇
α̇
∗W α̇ = 0. In terms of gauge connections

they are given by

W α̇ =
i

2
DαΓαα̇ = D2Γα̇ , W̃α =

i

2
∂ α̇

α Γα̇ +
i

2
[∇

α̇
,Γαα̇]∗ (2.7)

Covariantly (anti)chiral superfields can be defined according to ∇α̇ ∗Φ = 0 and ∇α ∗Φ = 0,

respectively.

At classical level, a NAC SYM theory with interacting chiral matter in the adjoint

representation of SU(N )⊗U(1) can be described by the following action [16]

S =
1

2g2

∫
d4xd2θ̄ Tr(W

α̇
∗W α̇) (2.8)

+
1

2g2
0

∫
d4x d4θ

[
Tr(Γ

α̇
) ∗ Tr(W α̇) + 4iFργθ

2
Tr
(
∂ρρ̇Γ

α̇
)
∗Tr

(
W α̇ ∗ Γ

ρ̇
γ

) ]

+

∫
d4x d4θ Tr(Φ ∗Φ)

+h

∫
d4x d2θ Tr(Φ ∗ Φ ∗Φ) + h̄

∫
d4x d2θ̄ Tr(Φ ∗ Φ ∗Φ)

where Φ ≡ eV∗ ∗φ∗e
−V
∗ , Φ̄ = φ are covariantly (anti)chiral superfields expressed in terms of

ordinary (anti)chirals. Therefore, the quadratic matter action contains nontrivial couplings

between gauge and chiral superfields.

The action is invariant under the infinitesimal supergauge transformations

δΦ = i[Λ,Φ]∗ , δΦ = i[Λ,Φ]∗

δΓαα̇ = [∇αα̇,Λ]∗ , δW α̇ = i[Λ,W α̇]∗ (2.9)

As discussed in [16] the term proportional to θ̄2 in (2.8) is necessary in order to restore

gauge invariance of
∫

Tr(Γ
α̇
)Tr(W α̇).

The transformation law for W α̇ can be rewritten as

δW
A
α̇ =

i

2
dABC [Λ̄B ,W

C
α̇ ]∗ −

1

2
fABC{Λ̄

B ,W
C
α̇ }∗ (2.10)

where A,B,C are SU(N )⊗U(1) indices. The first term is non-vanishing only in the NAC

case and mixes nontrivially U(1) and SU(N ) fields. In particular, the abelian field strength

W̄ 0
α̇ is no longer a singlet but transforms under SU(N ) into a linear combination of both

U(1) and SU(N ) fields.

In superspace, a convenient procedure for performing perturbative calculations for su-

per Yang-Mills theories is the background field method [20, 21]. It consists of a nonlinear

quantum-background splitting on the gauge superfields which leads to separate background

and quantum gauge invariances. Gauge fixing is then chosen which breaks the quantum

invariance while keeping manifest invariance with respect to the background gauge trans-

formations. Therefore, at any given order in the loop expansion the contributions to the

effective action are expressed directly in terms of covariant derivatives and field strengths

(without explicit dependence on the prepotential V ).

– 5 –



J
H
E
P
0
3
(
2
0
0
9
)
1
1
2

The generalization of the background field method to NAC SYM theories with chiral

matter in a real representation of the gauge group has been performed in [16]. Here we

summarize the main ingredients referring the reader to that paper for details.

We perform the splitting of the Euclidean prepotential eV∗ → eV∗ ∗ e
U
∗ where U is

the background prepotential and V its quantum counterpart. Consequently, the covariant

derivatives (2.4) become

∇α = ∇∇α = Dα , ∇α̇ = eV∗ ∗ ∇∇α̇ ∗ e
−V
∗ = eV∗ ∗ (eU∗ ∗ D̄α̇ e−U

∗ ) ∗ e−V
∗ (2.11)

Covariantly (anti)chiral superfields in the adjoint representation are expressed in terms of

background covariantly (anti)chiral objects as

Φ = Φ , Φ = eV∗ ∗Φ ∗ e
−V
∗ = eV∗ ∗ (eU∗ ∗ φ ∗ e

−U
∗ ) ∗ e−V

∗ (2.12)

and then splitted as Φ→ Φ+Φq and Φ̄→ Φ̄+ Φ̄q, where Φ, Φ̄ are background fields and

Φq, Φ̄q their quantum fluctuations.

We perform quantum-background splitting in the action (2.8) and extract the Feynman

rules necessary for one-loop calculations.

Gauge sector. As in the ordinary case, the invariance under quantum gauge transfor-

mations [16, 20, 21] is broken by choosing gauge-fixing functions as f = ∇∇
2
∗V , f = ∇∇2∗V ,

while preserving manifest invariance of the effective action and correlation functions under

background gauge transformations [16, 20, 21]. In ref. [16] the gauge-fixing procedure for

SU(N )⊗U(1) NAC gauge theories has been discussed in detail. As a result, extracting the

quadratic part in the quantum V fields from
∫
d4xd2θ̄[ 1

2g2 Tr(W
α̇
W α̇)+ 1

2g2
0
Tr(W

α̇
)Tr(W α̇)]

and adding the gauge-fixing action

SGF = −
1

g2α

∫
d4xd4θTr

[
(∇∇

2
∗ V )(∇∇2 ∗ V )

]
(2.13)

in Feynman gauge we find

S → −
1

2g2

∫
d4xd4θ

[
V a ∗ �̂ ∗ V a (2.14)

+V 0 ∗
(
∇∇2 ∗ ∇∇

2
+∇∇

2
∗ ∇∇2 −

g2
0 + g2

g2
0

∇∇
α̇
∗ ∇∇2 ∗ ∇∇α̇

)
∗ V 0

]

where the label a runs over SU(N ) indices and we have defined

�̂ = �cov − iW̃
α ∗ ∇∇α − iW

α̇
∗ ∇∇α̇ , �cov =

1

2
∇∇

αα̇
∗ ∇∇αα̇ (2.15)

Introducing also the covariant operator

�̃ = ∇∇2 ∗ ∇∇
2
+∇∇

2
∗ ∇∇2 −∇∇

α̇
∗ ∇∇2 ∗ ∇∇α̇ = �cov − iW̃

α ∗ ∇∇α +
i

2
(∇∇

α̇
∗W α̇) (2.16)

perturbative contributions can be written in terms of background covariant propagators

〈V aV b〉 = g2

(
1

�̂

)ab

〈V 0V 0〉 = g2

{
1

�̃

[
1 +

(
g2

g2 + g2
0

)
∇∇

α̇
∗ ∇∇2 ∗ ∇∇α̇ ∗

1

�̃

]}00

(2.17)
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Their expansion in powers of the background fields provides the ordinary 1
�

propagator for

abelian and non-abelian superfields plus pure-gauge interaction vertices (see appendix A).

Further vertices come from the background field expansion of the θ̄2 term in the second

line of action (2.8). Their explicit expressions can be found in appendix E of ref. [16].

The ghost action associated to the gauge-fixing (2.13) is given in terms of background

covariantly (anti)chiral FP and NK ghost superfields as

Sgh =

∫
d4xd4θ

[
c′c− c′c+ . . . ..+ bb

]
(2.18)

Chiral sector. We now discuss the quantization of the matter action in (2.8) when Φ, Φ̄

are full convariantly (anti)chiral superfields. With obvious modifications the results hold

also for the background covariantly chiral ghosts in (2.18).

We first express the full covariantly (anti)chiral superfields in terms of background

covariantly (anti)chiral superfields according to (2.12). Expanding in powers of V we have

(we use the notation Φ3
∗ ≡ Φ ∗ Φ ∗Φ)

S0 + Sint =

∫
d4xd4θ Φ̄ ∗Φ +

∫
d4xd4θ

(
Φ̄[V,Φ]∗ +

1

2
Φ̄[V, [V,Φ]∗]∗ + . . .

)

+h

∫
d4xd2θ Tr(Φ3

∗) + h

∫
d4xd2θ̄ Tr(Φ̄3

∗) (2.19)

where the Trace over group indices has been omitted since the quantization procedure

works independently of the color structure. After the shift Φ→ Φ+Φq, Φ̄→ Φ̄+ Φ̄q only

terms with two quantum superfields need be considered for one-loop calculations.

Quantization is accomplished by adding source terms

Sj =

∫
d4xd2θ j ∗Φq +

∫
d4xd2θ̄ Φ̄q ∗ j

=

∫
d4xd4θ

(
j ∗

1

�+
∗ ∇∇2Φq + Φ̄q ∗

1

�−
∗ ∇∇

2
∗ j

)
(2.20)

where, for any (anti)chiral superfield, we have defined

∇
2
∗ ∇2 ∗Φ = �+ ∗ Φ �+ = �cov − iW̃

α ∗ ∇α −
i

2
(∇α ∗ W̃α)

∇2 ∗ ∇
2
∗ Φ̄ = �− ∗ Φ̄ �− = �cov − iW

α̇
∗ ∇α̇ −

i

2
(∇

α̇
∗W α̇) (2.21)

and performing the gaussian integral in

Z =

∫
DΦqDΦ̄qe

Sint(
δ
δj

, δ

δj
)
e

R

d4xd4θ (Φ̄q∗Φq+j∗ 1
�+
∗∇∇2

Φq+Φ̄q∗
1

�−
∗∇∇

2
∗j)

(2.22)

The Feynman rules can then be read from

Z = ∆ e
Sint(

δ
δj

, δ

δj
)
e
−

R

d4xd4θ j∗ 1
�−
∗j

(2.23)

where ∆ ≡
∫
DΦqDΦ̄qe

S0 . In particular, we obtain the covariant scalar propagator

〈ΦAΦ̄B〉 = −

(
1

�−

)AB

(2.24)

– 7 –
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At one-loop, from the matter sector we have two different contributions to the effec-

tive action. A first contribution to the gauge effective action comes from the perturbative

evaluation of ∆. This can be worked out by using the doubling trick procedure intro-

duced in [20] for ordinary SYM theories and generalized to NAC theories in [16]. The

corresponding Feynman rules are collected in ref. [16]. A second contribution comes from

the perturbative expansion of eSint from which we can read gauge-chiral vertices. Further

interaction vertices arise from the expansion of 1/�− in powers of the background fields

(see appendix A).

3 One-loop divergences: the gauge sector

In ref. [16] we computed divergent contributions to the pure gauge sector of the NAC

SU(N )⊗U(1) SYM theory. It turned out that the classical action (2.8) is not renormalizable

since further divergent configurations arise at one-loop which are N = 1/2 supersymmetric

and supergauge invariant. However, we proved that it is possible to deform the classical ac-

tion in such a way as to produce a one-loop renormalizable theory. The manner in which we

proceeded is to start ab initio with a deformed action containing all possible terms allowed

by gauge invariance, R-symmetry, and dimensional analysis. We computed all one-loop

divergences produced by the new action and determined a one-loop renormalizable action

depending on a number of arbitrary coupling constants. Computing the β-functions we

found that they allow for specific restrictions on these constants. In particular, two different

choices for minimal deformed actions are allowed which are one-loop renormalizable

S(1)
gauge =

1

2 g2

∫
d4x d4θTr

(
Γ

α̇
∗W α̇

)

+
1

2 g2
0N

∫
d4x d4θ

[
Tr
(
Γ

α̇
)
∗ Tr

(
W α̇

)
+ 4iFργθ

2
Tr
(
∂ρρ̇Γ

α̇
)
∗ Tr

(
W α̇ ∗ Γ

ρ̇
γ

)

−F2θ
2
Tr
(
Γ

α̇
∗W α̇

)
Tr

(
W

β̇
∗W β̇

)]

+
1

l2
F2

∫
d4x d4θ θ

2
Tr

(
Γ

α̇
∗W α̇ ∗W

β̇
∗W β̇

)
(3.1)

or

S(2)
gauge =

1

2 g2

∫
d4x d4θ

[
Tr
(
Γ

α̇
∗W α̇

)
+ F2θ

2
Tr
(
Γ

α̇
∗W α̇

)
∗Tr

(
W

β̇
∗W β̇

)]

+
1

2 g2
0N

∫
d4x d4θ

[
Tr
(
Γ

α̇
)
∗Tr

(
W α̇

)
+ 4iFργ θ

2
Tr
(
∂ρρ̇Γ

α̇
)
∗Tr

(
W α̇ ∗ Γ

ρ̇
γ

)]

+
1

l2
F2

∫
d4x d4θ θ

2
Tr

(
Γ

α̇
∗W α̇ ∗W

β̇
∗W β̇

)
(3.2)

In both cases the theory contains three independent coupling constants. While g, g0 are

the SU(N )⊗U(1) couplings already present in the ordinary theory, the appearance of the

third coupling l is strictly related to the NAC deformation we have performed. We note
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that g, g0 must be different reflecting the fact that, as in the ordinary case, SU(N ) and

U(1) fields renormalize differently.

4 One-loop divergences: the matter sector

We now study the structure of one-loop divergent contributions to the matter sector with

particular attention to the superpotential problem.

We begin with the classical action

Smatter =

∫
d4x d4θ Tr(Φ ∗Φ) + h

∫
d4x d2θ Tr(Φ3

∗) + h̄

∫
d4x d2θ̄ Tr(Φ

3
∗) (4.1)

for covariantly (anti)chiral superfields. Applying background field method we evaluate

one-loop diagrams with external matter.

4.1 The quadratic action

Divergent diagrams contributing to the two-point function are given in figure 1 where the

internal lines correspond to ordinary 1/� propagators (straight lines correspond to chiral

propagators, whereas waved lines correspond to vectors). It turns out that divergent con-

tributions to the quadratic term come only from vertices not including the deformation pa-

rameter. Therefore, they coincide with the ones of the underformed theory and are given by

S

∫
d4xd4θ

[ (
9hh− 2g2

)
N Tr

(
Φ̄ ∗Φ

)
+
(
9hh + 2g2

)
TrΦ̄ ∗TrΦ

]
(4.2)

where S is the self-energy divergent integral which in dimensional regularization is (d =

4− 2ǫ)

S ≡

∫
ddq

1

q2(q − p)2
=

1

(4π)2
1

ǫ
+O(1) (4.3)

We note that a new trace structure appears reflecting the fact that SU(N ) and U(1)

superfields acquire different contributions. In fact, considering only the kinetic term, the

previous result reads (using eq. (2.12))

S

∫
d4xd4θ

[(
9hh− 2g2

)
N φ̄aφa + 18hhN φ̄0φ0

]
(4.4)

In particular, corrections to the abelian kinetic term coming from the gauge-chiral loop

cancel in agreement with the calculation done in components [19].

In the ordinary case, the appearance of the double-trace term is harmless since it is

supergauge invariant. In the NAC case this is no longer true since its variation is

δTrΦ̄ ∗ TrΦ = 2iθ̄2Fαβ
[
Tr
(
∂ α̇

α Λ̄ ∗ ∂βα̇Φ̄
)
∗ TrΦ + TrΦ̄ ∗Tr

(
∂ α̇

α Λ̄ ∗ ∂βα̇ Φ
)]

(4.5)

and does not vanish when integrated on superspace coordinates.
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Figure 1. One-loop two-point functions with chiral external fields.

On general grounds, it is easy to see that there are two possible gauge completions for∫
TrΦ̄ ∗ TrΦ. In fact, the following expressions (both for background covariantly and full

covariantly (anti)chiral superfields)

TrΦ̄ ∗ TrΦ + 2iθ̄2Fαβ Tr(Γ̄ α̇
α ∗ Φ̄) ∗Tr(∂βα̇Φ) + 2iθ̄2Fαβ Tr(Γ̄ α̇

α ∗Φ) ∗Tr(∂βα̇Φ̄) (4.6)

and

TrΦ̄ ∗ TrΦ − 2iFαβ θ̄2Tr

[
Γ̄ α̇

α ∗

(
∂βα̇Φ̄−

i

2
[Γ̄βα̇, Φ̄]∗

)]
∗ Tr (Φ)

− 2iFαβ θ̄2Tr

[
Γ̄ α̇

α ∗

(
∂βα̇Φ−

i

2
[Γ̄βα̇,Φ]∗

)]
∗ Tr

(
Φ̄
)

(4.7)

are both gauge invariant when integrated. While the first expression involves only gauge-

chiral cubic terms in addition to the quadratic term, the second one involves also quartic

couplings. Therefore, we have to investigate whether at one-loop the theory develops

further divergent terms cubic and/or quartic in the background fields which provide the

gauge completion of
∫

TrΦ ∗ TrΦ̄.

Divergences proportional to gauge-chiral cubic terms are still obtained from diagrams

in figure 1 where the internal lines correspond to covariant 1/�− and 1/�̂ propagators

expanded up to quadratic order in the background gauge superfields (see eqs. (A.6), (A.23)).

Summing the contributions coming from both diagrams in figure 1 we obtain

(9hh + 2g2) S

∫
d4xd4θ 2i Fαβ θ̄2

[
Tr(Γ̄ α̇

α ∗ Φ̄) ∗ Tr(∂βα̇Φ) + Tr(Γ̄ α̇
α ∗Φ) ∗ Tr(∂βα̇Φ̄)

]

− 2i(9hh − 2g2) S

∫
d4xd4θ Fαβ θ̄2Tr(∂βα̇Γ̄ α̇

α ) ∗Tr(Φ ∗ Φ̄) (4.8)

The first line is exactly the gauge completion of (4.2) according to (4.6). In addition, a

second divergent term appears in the second line. Since it is gauge invariant it is allowed

by super Ward identities.

We should not expect divergent four-point functions proportional to Γ̄αα̇ connections

since there is no need to saturate gauge-variation of two-point divergences. In fact, from a

direct inspection one can realize that only structures of the form

F2

∫
d4xd4θ θ̄2 Φ ∗ Φ̄ ∗ W̄ α̇ ∗ W̄α̇ (4.9)

can be divergent. For any kind of trace structure all these terms are gauge-invariant and

do not interfere with the previous structures.
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To summarize, the evaluation of one-loop divergences reveals that the action (4.1) we

started with is not renormalizable because of the appearance of new one-loop structures

not originally present.

At this stage it is easy to generalize the classical action to a renormalizable one in a

gauge invariant way: It is sufficient to start with a classical quadratic action of the form
∫
d4xd4θ

{
Tr
(
Φ̄ ∗ Φ

)
(4.10)

+
[
TrΦ̄ ∗ TrΦ + 2iθ̄2FαβTr(Γ̄ α̇

α ∗ Φ̄) ∗ Tr(∂βα̇Φ) + 2iθ̄2FαβTr(Γ̄ α̇
α ∗Φ) ∗Tr(∂βα̇Φ̄)

]}

supplemented by the gauge invariant terms appearing in the second line of (4.8) and in (4.9).

We stress once again that the divergent contributions (4.2) to the quadratic action

would be present also in the ordinary, not deformed theory. Therefore, also in that case we

would be forced to generalize the classical quadratic action to contain a double-trace part,

in order to make the theory renormalizable. The crucial difference is that the double-trace

term would be gauge invariant and no gauge completion would be required.

As already mentioned, in the NAC case the double trace quadratic action has in

principle two possible gauge completions. From direct inspection, the theory seems to

prefer the gauge invariant structure (4.6) rather than (4.7).

4.2 The superpotential problem

As we now describe, when a chiral superpotential is turned on the generalization (4.10) for

the quadratic matter action is not sufficient to make the theory renormalizable.

Since the nonrenormalization theorem for chiral integrals works also in the NAC

case [11, 12], the cubic superpotential in (4.1) does not get corrected by new diagrams

proportional to Φ3 and/or Φ̄3. As in the ordinary case, the renormalization of the chiral

coupling constant is induced by the wave-function renormalization under the requirement

that ZhZ
−3/2
Φ = 1 (a similar relation holds for the antichiral coupling). On the other hand,

SU(N ) and U(1) chiral superfields renormalize differently, so should do the correspond-

ing chiral couplings. Therefore, a cubic superpotential as the one in (4.1) which assigns

the same coupling to the SU(N ), U(1) and mixed interaction vertices is inconsistent with

the request of renormalizability. We note that this problem is not peculiar of the NAC

deformation being present already in the ordinary case.

The way out is once again the generalization of the classical action to include different

couplings for different cubic vertices. Exploiting the fact that in Euclidean space ZΦ̄

is not necessarily equal to ZΦ, we can trigger the renormalization in such a way that

for instance all the renormalization asymmetry between non-abelian and abelian fields

is confined to the antichiral sector. As a consequence, we can consistently choose the

ordinary h
∫
d4x d2θTr(Φ3

∗) superpotential in the chiral sector, but generalize the one for

the antichiral sector to∫
d4x d2θ̄

[
h̄1Tr(Φ̄3

∗) + h̄2TrΦ̄ ∗Tr(Φ̄2
∗) + h̄3(TrΦ̄)3∗

]
(4.11)

However, while in the ordinary case the different structures are separately gauge invariant,

in the NAC case the addition of the h̄2, h̄3 terms breaks gauge invariance. In fact, due
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to the lack of θ-integration, the traces are no longer cyclic and δ
∫

(TrΦ̄ ∗ Tr(Φ̄2
∗)) and

δ
∫

(TrΦ̄)3∗ are non-vanishing.

The gauge completion of these terms reads

h̄2

∫
d4xd2θ̄

{
Tr

(
Φ̄− 2iθ̄2Fαβ Γ̄ α̇

α ∗

{
∂βα̇Φ̄−

i

2

[
Γ̄βα̇, Φ̄

]
∗

})
∗ Tr

(
Φ̄2
∗

)

+TrΦ̄ ∗ Tr

(
Φ̄2
∗ − 2iθ̄2Fαβ Γ̄ α̇

α ∗

{
∂βα̇Φ̄2

∗ −
i

2

[
Γ̄βα̇, Φ̄

2
∗

]
∗

})}
(4.12)

and

h̄3

∫
d4xd2θ̄Tr

(
Φ̄− 6iθ̄2FαβΓ̄ α̇

α ∗

{
∂βα̇Φ̄−

i

2

[
Γ̄βα̇, Φ̄

]
∗

})
∗Tr

(
Φ̄
)
∗Tr
(
Φ̄
)

(4.13)

respectively.

The terms proportional to Γ̄αα̇ in the previous expressions break supersymmetry com-

pletely since they are given by non-antichiral expressions integrated over an antichiral

measure. Therefore, one-loop renormalizability, gauge invariance and N = 1/2 supersym-

metry seem to be incompatible. This is the translation in superspace language of the

negative result already found in components [19].

4.3 The solution to the superpotential problem

Fortunately, generalizing the superpotential to contain more than one coupling constant

does not seem to be the only possibility for constructing a renormalizable action. In fact,

an alternative procedure exists for treating the diverse renormalization of the abelian fields

in a consistent way. The idea is to start with a classical quadratic action of the form (4.10)

but with a new coupling in front of the double-trace term

∫
d4xd4θ

{
Tr
(
Φ̄ ∗ Φ

)
+
κ− 1

N

[
TrΦ̄ ∗ TrΦ (4.14)

+2iθ̄2FαβTr(Γ̄ α̇
α ∗ Φ̄) ∗ Tr(∂βα̇Φ) + 2iθ̄2FαβTr(Γ̄ α̇

α ∗ Φ) ∗ Tr(∂βα̇Φ̄)
]}

and tune the renormalization of κ with the wave-function renormalization in order to

make SU(N ) and U(1) superfields to renormalize in the same way. Consequently, a cubic

superpotential of the form h
∫

TrΦ3
∗+ h̄

∫
TrΦ̄3

∗ can be safely added, with no need of further

terms like the ones in (4.11).

As discussed in details in appendix A, the background field method can be easily

generalized to the action (4.14) by performing a change of variables Φq → Φ′q = (Φa
q , κ1Φ

0
q)

and Φ̄q → Φ̄′q = (Φ̄a
q , κ2Φ̄

0
q), κ1κ2 = κ, in the functional integral. The net result is a

rescaling of the covariant propagators according to eqs. (A.18)–(A.21). Expanding the

propagators in powers of the background gauge fields (see appendix A) this is equivalent

to a rescaling of the abelian propagator

〈φ̄0φ0〉 =
1

κ

1

�0
(4.15)
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and a rescaling of all gauge-chiral interaction vertices involving abelian superfields. Pre-

cisely, vertices containing Φ0, Φ̄0 acquire an extra coupling constant 1/κ1, 1/κ2, respec-

tively.

It is important to note that in the covariant propagators the κ1, κ2 couplings appear

only in terms proportional to the deformation parameter. Therefore, the dependence on

these two couplings would disappear in the ordinary N = 1 supersymmetric case. In that

case, as it is well known, the rescaling (4.15) of the abelian propagator would be the only

effect of choosing a modified quadratic lagrangian for the abelian superfields.

To summarize, we begin with a NAC classical gauge theory whose gauge sector is still

described by (3.1) or (3.2) , whereas the matter action is given by (4.14) supplemented

by the single-trace cubic superpotential. However, as appears from one-loop calculations,

extra couplings need be considered which are consistent with N = 1/2 supersymmetry and

supergauge invariance. In the next section we will select all possible couplings which can

be added at classical level.

5 The most general gauge invariant action

Before entering the study of renormalization properties, we will select all possible divergent

structures which could come out at quantum level on the basis of dimensional analysis and

global symmetries of the theory.

5.1 Dimensional analysis and global symmetries

The most general divergent term which may arise at quantum level has the form
∫
d4xd4θ θ̄τ̄ Fα Λβ Dγ D̄γ̄ ∂δ Γ̄σ̄ Φn Φ̄m hr h̄s (5.1)

where all the exponents are non negative integers. Of course, powers of the gauge coupling

g can appear. However, its presence is irrelevant for our discussion, being g adimensional

and with zero R-symmetry charge. Therefore, in what follows we will neglect it.

We make the following simplifications:

• We can choose the connections to be the bosonic Γ̄αα̇. In fact, thanks to the relation

Γ̄αα̇ = −iDαΓ̄α̇, switching from bosonic to fermionic connections would amount to

shifting γ → γ + σ̄.

• The parameter τ̄ takes the values 0, 1, 2. However, we can fix it to be 2 by writing

θ̄α̇ = D̄α̇θ̄2 → θ̄2D̄α̇ and −1 = D̄2θ̄2 → θ̄2D̄2 where we think of integrating by parts

the antichiral derivatives.

• Assuming that the NAC deformation is a soft supersymmetry breaking mechanism

we set β = 0.

• At one-loop, the Φ3 vertex provides a single power of the h coupling and one external

Φ-field. Taking into account that further external chirals can come from gauge-chiral

vertices, we have the constraint r ≤ n. Similarly, for the antichiral vertex it must be

s ≤ m.
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dim R-charge Φ-charge

Γ
αα̇

1 0 0

Dα ≡ ∇α 1/2 1 0

D̄α̇ 1/2 −1 0

θ̄ −1/2 1 0

∂αα̇ 1 0 0

Fργ −1 −2 0

Φ 1 −1 1

h 0 1 −3

Φ̄ 1 1 −1

h̄ 0 −1 3

Table 1. Dimensions, R and Φ-charge assignments of N = 1/2 operators.

Therefore, the general structure for divergences can be reduced to the following form
∫
d4xd4θ θ̄2 Fα ∇γ D̄γ̄∂δ Γ̄σ̄ Φn Φ̄m hr h̄s r ≤ n , s ≤ m (5.2)

where the number of ∇-derivatives should not exceed (σ̄ + 2(n − 1)) in order to avoid

the integrand to be a total ∇-derivative. Further constraints on the exponents come from

imposing the global symmetries as listed in table 1, in addition to the request for the

integrand to have mass dimension 2. Moreover, we need impose the number of dotted and

undotted indices to be even from the requirement that they contract among themselves

to generate a supersymmetry singlet. Finally, we impose α ≥ 1 to allow for a non-trivial

dependence on the nonanticommutative parameter.

With the charge assignements given in table 1 the set of constraints read

Dimensions: −3− α+ γ
2 + γ̄

2 + δ + σ̄ + n+m = 0

R-charge: 2− 2α+ γ − γ̄ − n+m+ r − s = 0

Index contraction: 2α+ γ + δ + σ̄ = 2l + 4

γ̄ + δ + σ̄ = 2l′

Derivatives: γ ≤ σ̄ + 2n− 2

Φ-symmetry: n−m+ 3(s− r) = 0

One-loop rules: r ≤ n

s ≤ m

(5.3)

where l, l′ ≥ 0 are integer numbers.

Combining the first two equations we get

8− 4l′ = 3n+m− r + s ≥ 3n+m− r ≥ 2n+m ≥ 0 (5.4)

from which we derive the conditions

l′ ≤ 2 2n+m ≤ 8− 4l′ (5.5)
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A simple constraint on l can be obtained from merging the third, the forth and the sixth

equations in (5.3)

2(l − l′) + 4 = 2α+ γ − γ̄ ≤ 2α+ σ̄ + 2n− 2− γ̄

= 2α+ 2l′ − δ + 2n− 2γ̄ − 2

⇒ l ≤ α+ 2l′ − 3−
1

2
δ + n− γ̄ (5.6)

Then, using the first constraint and the previous bound we find

2n+m = 3 + α+ n−
1

2
γ −

1

2
γ̄ − 2l′ + γ̄ ≤ 8− 4l′ (5.7)

which, after a bit of trivial algebra, provides a constraint on α

1 ≤ α ≤ 4− l′ − γ̄ (5.8)

Finally, using this condition we can constrain l even more and obtain

0 ≤ l ≤ 5− δ − l′ − 2γ̄ (5.9)

Now we are ready to list divergent contributions. We assign values 0, 1, 2 to l′ according

to (5.5), and we fix δ, σ̄ and γ̄, which are bounded by l′ itself. Then we can vary l into

the range given by (5.9) and α in the range (5.8), while the value of γ follows immediately

from the third equation in (5.3). Finally, the remaining parameters (n,m, r, s) are varied

according with the set of equations (5.3).

A detailed investigation reveals that, independently of their particular trace structure,

the only allowed terms are (for the moment we forget about ∗-products)

1. Matter sector. These structures are obtained by setting σ̄ = 0 when l′ = 0, 1 and

correspond to

h̄(hh̄)rF2

∫
d4xd4θ θ̄2ΦΦ̄4 r = 0, 1 (5.10)

(hh̄)rF2

∫
d4xd4θ θ̄2Φ(∇2Φ)Φ̄2 r ≤ 2 (5.11)

h F2

∫
d4xd4θ θ̄2Φ(∇2Φ)2 (5.12)

h Fαβ

∫
d4xd4θ θ̄2(∇αΦ)(∇βΦ)Φ (5.13)

Powers of the gauge coupling g are also allowed. The first three terms are non-

vanishing whatever the color structure is. In the abelian case they correspond to

the actual structures which arise at one and two loops in the ungauged NAC WZ

model [12–14]. The last term, instead, is nontrivial only when ∇αΦ and ∇βΦ have

different color index. Therefore, it is present only when gauging the WZ model with

a non-abelian group.
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2. Mixed sector. All structures selected correspond to the case l′ = 1 and are given by

(hh̄)rFαβ

∫
d4xd4θ θ̄2∂ α̇

β Γ̄αα̇ΦΦ̄ (5.14)

(hh̄)rFαβ

∫
d4xd4θ θ̄2Γ̄ α̇

β Γ̄αα̇ΦΦ̄ (5.15)

h̄ F2

∫
d4xd4θ θ̄2Γ̄αα̇Γ̄αα̇Φ̄Φ̄Φ̄ (5.16)

(hh̄)rF2

∫
d4xd4θ θ̄2W

α̇
W α̇ΦΦ̄ (5.17)

where in (5.14) the space-time derivative can act on any of the three fields.

At one-loop, we can only have r = 0, 1. When r = 0 a g2 factor is present and

corresponds to contributions generated by mixed gauge-chiral vertices. When r = 1

we have divergent terms generated by pure (anti)chiral vertices.

3. Gauge sector. This case corresponds to l′ = 2 because of the bound 2n+m ≤ 8−4l′ =

0 which implies n = m = 0, i.e. no external (anti)chiral fields. The structures we find

are exactly the ones found in [16].

The previous analysis can be generalized to the case β 6= 0 in (5.1) allowing for positive

powers of the UV cut-off. It is not difficult to see that for any positive value of β non-trivial

structures which satisfy all the constraints cannot be constructed. This proves that even

in the presence of interacting matter supersymmetry is softly broken.

5.2 Gauge invariance

The previous structures have been selected without requiring supergauge invariance. We

expect that imposing it as a further constraint, only particular linear combinations of the

previous terms with specific color structures will survive.

In the matter sector, thanks to the presence of the θ̄2 factor, the (anti)chiral interac-

tion terms (5.10)–(5.12) are gauge-invariant, independently of their color structure. The

term (5.13) is non-vanishing only when it is single-trace and it is gauge invariant.

Focusing on the mixed sector, it is easy to see that the general terms (5.16), (5.17) are

always gauge invariant, independently of their trace structure.

Terms (5.14), (5.15), instead, give rise to different gauge invariant combinations de-

pending on their trace structure. The only invariant single-trace operator which can arise

at one-loop is

Fαβ θ̄2Tr

(
∂βα̇Γ̄ α̇

α {Φ, Φ̄} −
i

2
[Γ̄βα̇, Γ̄

α̇
α ]∗{Φ, Φ̄}

)
(5.18)

where the explicitly indicated ∗-product is the only non-trivial ∗-product which appears.

Looking at double-trace operators, we already know that structures of the form (5.14), (5.15)

combine with the double-trace 2pt function in order to make it gauge invariant (see
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eqs. (4.6), (4.7)). Further gauge invariant combinations from (5.14), (5.15) are

Fαβ θ̄2 Tr

(
∂βα̇Γ̄ α̇

α Φ−
i

2
[Γ̄βα̇, Γ̄

α̇
α ]∗Φ

)
Tr(Φ̄) (5.19)

Fαβ θ̄2 Tr

(
∂βα̇Γ̄ α̇

α Φ̄−
i

2
[Γ̄βα̇, Γ̄

α̇
α ]∗Φ̄

)
Tr(Φ) (5.20)

Fαβ θ̄2 Tr
(
∂βα̇Γ̄ α̇

α

)
Tr
(
ΦΦ̄
)

(5.21)

while there is no way to saturate the gauge variation of Fαβ θ̄2Tr
(
Γ̄ α̇

α

)
Tr
(
(∂βα̇Φ)Φ̄

)
or,

similarly, of the term obtained by exchanging Φ ↔ Φ̄. Indeed, only the combination[
Fαβ θ̄2Tr

(
Γ̄ α̇

α

)
Tr
(
(∂βα̇Φ)Φ̄

)
+ Fαβ θ̄2Tr

(
Γ̄ α̇

α

)
Tr
(
Φ(∂βα̇Φ̄)

)]
is gauge invariant. However,

integrating by parts, this reduces to (5.21).

Using similar arguments, we find that the only triple-trace gauge-invariant operator is

Fαβ θ̄2 Tr
(
∂βα̇Γ̄ α̇

α

)
Tr(Φ)Tr(Φ̄) (5.22)

Finally, looking at the gauge sector, once we impose gauge invariance only terms

corresponding to all NAC structures present in (3.1), (3.2) are selected.

5.3 The general action

We are now ready to propose the most general classical action for a NAC gauge theory

with massless matter in the adjoint of SU(N )⊗U(1). Introducing the greatest number of

coupling constants compatible with gauge invariance, we write

S = Sgauge + Smatter + SΓ̄ + SW̄ (5.23)

where Sgauge is given in (3.1) (or equivalently (3.2)),

Smatter =

∫
d4xd4θ

{
Tr
(
Φ̄ ∗ Φ

)
+
κ− 1

N

[
TrΦ̄ ∗ TrΦ

+2iθ̄2FαβTr(Γ̄ α̇
α ∗ Φ̄)∗Tr(∂βα̇Φ)+ 2iθ̄2FαβTr(Γ̄ α̇

α ∗ Φ) ∗Tr(∂βα̇Φ̄)
]}

+h

∫
d4xd2θ TrΦ3

∗ + h̄

∫
d4xd2θ̄ TrΦ̄3

∗ + h̃3 F
αβ

∫
d4xd4θ θ̄2Tr((∇αΦ)(∇βΦ)Φ)

+
3∑

j=1

h
(j)
3 C

ABC
j F2

∫
d4xd4θ θ̄2ΦA(∇2ΦB)(∇2ΦC)

+
10∑

j=1

h
(j)
4 D

ABCD
j F2

∫
d4xd4θ θ̄2ΦA(∇2ΦB)Φ̄CΦ̄D

+

12∑

j=1

h
(j)
5 E

ABCDE
j F2

∫
d4xd4θ θ̄2ΦAΦ̄BΦ̄CΦ̄DΦ̄E (5.24)
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and SΓ̄, SW̄ contain all possible gauge invariant mixed terms proportional to the bosonic

connection

SΓ̄ = t1 F
αβ

∫
d4xd4θ θ̄2Tr

(
∂βα̇Γ̄ α̇

α

)
Tr
(
Φ̄Φ
)

+t2 F
αβ

∫
d4xd4θ θ̄2Tr

(
∂βα̇Γ̄ α̇

α

)
TrΦ̄ TrΦ

+t3 F
αβ

∫
d4xd4θ θ̄2Tr

(
(∂βα̇Γ̄ α̇

α −
i

2
[Γ̄βα̇, Γ̄

α̇
α ]∗) {Φ̄,Φ}

)

+t4 F
αβ

∫
d4xd4θ θ̄2Tr

(
(∂βα̇Γ̄ α̇

α −
i

2
[Γ̄βα̇, Γ̄

α̇
α ]∗) Φ

)
TrΦ̄

+t5 F
αβ

∫
d4xd4θ θ̄2Tr

(
(∂βα̇Γ̄ α̇

α −
i

2
[Γ̄βα̇, Γ̄

α̇
α ]∗) Φ̄

)
TrΦ

+
18∑

j=1

t̃
(j)
6 G

ABCDE
j F2

∫
d4xd4θ θ̄2 Γ̄A αα̇Γ̄B

αα̇Φ̄CΦ̄DΦ̄E (5.25)

and to the field-strength

SW =
12∑

j=1

lj H
ABCD
j F2

∫
d4xd4θ θ̄2 W

A α̇
W

B
α̇ ΦCΦ̄D (5.26)

We have introduced the following group tensors to take into account all possible color

structures (we use the shorten notation Tr(TA) = (A) for any group matrix)

CABC
1 = (ABC) CABC

2 = (AB)(C) CABC
3 = (A)(B)(C)

DABCD
1 = (ABCD) DABCD

2 = (ACBD)

DABCD
3 = (A)(BCD) DABCD

4 = (C)(ABD)

DABCD
5 = (AB)(CD) DABCD

6 = (AC)(BD)

DABCD
7 = (AB)(C)(D) DABCD

8 = (AC)(B)(D) DABCD
9 = (A)(B)(CD)

DABCD
10 = (A)(B)(C)(D)

EABCDE
1 = (ABCDE) EABCDE

2 = (ABCD)(E) EABCDE
3 = (BCDE)(A)

EABCDE
4 = (ABC)(DE) EABCDE

5 = (BCD)(AE) EABCDE
6 = (ABC)(D)(E)

EABCDE
7 = (BCD)(A)(E) EABCDE

8 = (AB)(CD)(E) EABCDE
9 = (BC)(DE)(A)

EABCDE
10 = (A)(BC)(D)(E) EABCDE

11 = (AB)(C)(D)(E)

EABCDE
12 = (A)(B)(C)(D)(E)

GABCDE
1 = (ABCDE) GABCDE

2 = (ACBDE)

GABCDE
3 = (ABCD)(E) GABCDE

4 = (ACBD)(E) GABCDE
5 = (BCDE)(A)

GABCDE
6 = (ABC)(DE) GABCDE

7 = (BCD)(AE) GABCDE
8 = (AB)(CDE)

GABCDE
9 = (ABC)(D)(E) GABCDE

10 = (BCD)(A)(E) GABCDE
11 = (A)(B)(CDE)

GABCDE
12 = (AB)(CD)(E) GABCDE

13 = (BC)(DE)(A) GABCDE
14 = (BC)(AD)(E)
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GABCDE
15 = (A)(BC)(D)(E) GABCDE

16 = (AB)(C)(D)(E)

GABCDE
17 = (A)(B)(CD)(E) GABCDE

18 = (A)(B)(C)(D)(E)

HABCD
1 = (ABCD) HABCD

2 = (ACBD)

HABCD
3 = (A)(BCD) HABCD

4 = (C)(ABD) HABCD
5 = (D)(ABC)

HABCD
6 = (AB)(CD) HABCD

7 = (AC)(BD)

HABCD
8 = (AB)(C)(D) HABCD

9 = (AC)(B)(D) HABCD
10 = (AD)(B)(C)

HABCD
11 = (A)(B)(CD) HABCD

12 = (A)(B)(C)(D) (5.27)

Whenever in the action the ∗-product is not explicitly indicated the products are indeed

ordinary products. This happens in most terms above because of the presence of the

θ̄2 factor.

6 One-loop renormalizability and gauge invariance

In this section we will provide general arguments in support of the one-loop renormaliz-

ability of the action (5.23).

The action (5.23) has been obtained by including all possible divergent structures which

can appear at one-loop. Therefore, one might be tempted to conclude that it is a fortiori

renormalizable. However, some of these terms need enter particular linear combinations

in order to insure gauge-invariance. Such terms are identified by couplings (κ − 1) and

t3, t4, t5. Therefore, proving one-loop renormalizability amounts to prove that quantum

corrections maintain the correct gauge-invariant combinations. In what follows we will be

mainly focused on these terms and find the conditions under which gauge invariance is

maintained at quantum level.

In order to perform one-loop calculations we use the background-field method revised

in section 2 and applied to the general action (5.23). In appendix A the necessary Feynman

rules are collected.

When drawing possible divergent diagrams we make use of the following observations:

First of all, from the dimensional analysis performed in section 5, one-loop divergences may

be proportional to the non-anticommutation parameter F at most quadratically. Therefore,

we do not take into account diagrams which give higher powers of F . Moreover, the

structures we are mainly interested in (the ones associated to the couplings (κ − 1) and

t3, t4, t5) are proportional to Fαβ , so they cannot receive corrections from diagrams which

contain vertices proportional to F2.

For each supergraph we perform ∇-algebra [20–22] in order to reduce it to an ordinary

momentum graph and read the background structures associated to the divergent integrals.

We discuss renormalizability of the different sectors, separately.

6.1 Pure gauge sector

In the absence of a superpotential term, the one-loop effective action for the gauge sector

has been already computed in [16].

– 19 –



J
H
E
P
0
3
(
2
0
0
9
)
1
1
2

With the addition of the cubic superpotential and the related modifications of the

classical action, the gauge effective action could, a priori, get corrected because of two

different reasons: The modification of the chiral propagators to include different couplings

for the abelian superfields which might affect the evaluation of ∆ in (2.23), and the presence

of new mixed gauge-chiral interaction vertices from Sint in (2.22) as coming from SΓ̄ and

SW̄ and the second line of (5.24).

The former modification is harmless because of the reparametrization invariance of

∆ under the change of variables ΦA → Φ′A ≡ (Φa, κ1Φ
0), Φ̄A → Φ̄′A ≡ (Φ̄a, κ2Φ̄

0),

κ = κ1κ2

∆ =

∫
DΦDΦ̄ exp

∫
d4xd4θ

(
TrΦ̄Φ +

κ− 1

N
TrΦ̄TrΦ

)

∼

∫
DΦ′DΦ̄′ exp

∫
d4xd4θ TrΦ̄′Φ′ (6.1)

The κ-independence of ∆ can be also checked by explicit calculations, noting that in its

one-loop expansion abelian superfields never enter.

The other source of possible modifications for the gauge effective action is the appear-

ance of new gauge-chiral vertices in SΓ̄ and SW̄ , eqs. (5.25) and (5.26), and second line

of (5.24). In any case the new vertices produce tadpole-like diagrams when contracting the

matter superfields leaving gauge fields as background fields. After ∇-algebra, the tadpole

provides the covariant propagator 1/�cov which can be expanded as in (A.23) up to second

order in Γ̄ producing divergent contributions. It is easy to prove that these divergences

cancel exactly as in the ordinary case.

We conclude that the addition of a cubic superpotential and related modifications

does not change the results in [16] for the divergent part of the one-loop gauge effective

action. Therefore, if we start with a classical action as the one in (3.1) or (3.2) we can

multiplicatively renormalize all the divergences of the gauge sector (see ref. [16] for the

detailed calculation).

6.2 Gauge-matter sector

We now study one-loop divergent contributions to the rest of the action, i.e. Smatter +

SΓ̄ +SW̄ (see eqs. (5.24)–(5.26)). The contributions identified by the couplings (κ− 1) and

t3, t4, t5, whose gauge invariance is under discussion, belong to this sector. Therefore, we

concentrate primarily on this kind of terms.

Divergent contributions come from diagrams in figure 2 where internal lines are co-

variant gauge and chiral propagators (see eqs. (A.1), (A.18)–(A.21)) . Expanding the

propagators in powers of the background superfields we find two, three and four-point

divergences, whereas higher powers give rise to finite contributions.

We analyze the diagrams separately.

Diagram (2a). Diagram (2a) is obtained by joining two vertices in figure (3a) by one

chiral propagator 1/�− and one vector propagator 1/�̂. Expanding the propagators at

the lowest order, 1/�−, 1/�̂ ∼ 1/�, we obtain the ordinary divergent quadratic term when
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(a)
h h

(b)
h h

κ - 1

(c)

∂ ΓA - i/2 [Γ,Γ]A

t1, t3

(d)

∂ ΓA - i/2 [Γ,Γ]A

h h

tj

(e)

κ-1
(f)

t3, t4, t5
(g)

∂ ΓA - i/2 [Γ,Γ]A

t1, t3, t4
(h)

h3
h

(i)

Figure 2. Master diagrams which, after the expansion of the covariant propagators, give rise to

two, three and four-point divergent contributions.

the ∗-product at the vertices is neglected. Quadratic terms with a nontrivial dependence

on F are finite. Instead, divergent three-point functions exhibiting a linear dependence on

F come from the first order expansion of the propagators (see eqs. (A.6), (A.23)). Their

dependence on the NAC parameter comes either when expanding the ∗-product at the

vertices or from Fαβ terms in eqs. (A.6), (A.23). Combining all contributions, diagram

(2a) gives rise to

Γ
(1)
2 (g) + Γ

(1)
3 (g) + Γ

′(1)
3 (g) + Γ

(1)
4 (g) (6.2)

where

Γ
(1)
2 (g)+Γ

(1)
3 (g) = 2g2S

∫
d4xd4θ

[
−NTr

(
Φ̄Φ
)
+TrΦ̄∗TrΦ + 2iθ̄2FαβTr(Γ̄ α̇

α ∗Φ̄)∗Tr(∂βα̇Φ)

+2iθ̄2Fαβ Tr(Γ̄ α̇
α ∗Φ) ∗ Tr(∂βα̇Φ̄)

]
(6.3)
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and

Γ
′(1)
3 (g) = 4ig2SFαβ

∫
d4xd4θ θ̄2Tr(∂βα̇Γ̄ α̇

α )Tr(ΦΦ̄) (6.4)

Four-point functions Γ
(1)
4 (g) come from the second order expansion of the product of the two

propagators. They are divergent but always proportional to F2, therefore automatically

gauge-invariant.

We note that the divergences (6.3), (6.4) come in the right linear combinations for

preserving gauge-invariance.

Diagrams (2b, 2c). With the aim of discussing gauge invariance, it is convenient to

consider the sum of diagrams (2b) and (2c). Diagram (2b) is obtained by joining one h

and one h̄ vertices in figure (3h, 3j) by two 1/�− propagators, whereas diagram (2c) is

generated from diagram (2b) by the insertion of an extra (κ− 1)-vertex in figures (3c, 3d).

Expanding the chiral propagators at the lowest order, 1/�− ∼ 1/� and neglecting the

∗-product at the vertices, from diagram (2b) we obtain the ordinary divergent quadratic

term and from diagram (2c) a three-point divergent contribution linear in F . Further three

and four-point contributions come from the higher order expansion of the propagators in

both diagrams. In diagram (2b) the linear dependence in the NAC parameter comes either

from terms in the propagator expansion or from the ∗-product at the vertices.

Combining all contributions, the sum of the two diagrams gives rise to

Γ
(1)
2 (h, h̄) + Γ

(1)
3 (h, h̄) + Γ

′(1)
3 (h, h̄) + Γ

(1)
4 (h, h̄) (6.5)

where

Γ
(1)
2 (h, h̄) + Γ

(1)
3 (h, h̄) = S

∫
d4xd4θ

{
9hh

(
N + 4

1− κ

Nκ

)
Tr
(
Φ̄ ∗Φ

)

9hh

(
1 + 2

(
1− κ

Nκ

)2
)[

TrΦ̄ ∗ TrΦ + 2iθ̄2Fαβ Tr(Γ̄ α̇
α ∗ Φ̄) ∗ Tr(∂βα̇Φ)

+2iθ̄2Fαβ Tr(Γ̄ α̇
α ∗Φ) ∗ Tr

(
∂βα̇Φ̄

)]}
(6.6)

Γ
′(1)
3 (h, h) =

[
54

N
−

18

κN
−

18

κ1N
−

18

κ2N
− 36

1 − κ

κN

]
i

× hhSFαβ

∫
d4xd4θ θ̄2Tr(∂βα̇Γ̄ α̇

α {Φ, Φ̄})

+

[
−

36

N 2
+

36

κ1N 2
+

36

κN 2
−

36

κ1κN 2

]
i

× hhSFαβ

∫
d4xd4θ θ̄2Tr(∂βα̇Γ̄ α̇

α Φ̄) TrΦ

+

[
−

36

N 2
+

36

κ2N 2
+

36

κN 2
−

36

κ2κN 2
− 36

(
1− κ

κN

)2
]
i

× hhSFαβ

∫
d4xd4θ θ̄2Tr(∂βα̇Γ̄ α̇

α Φ) TrΦ̄
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+

[
−

36

N 2
+

36

κ1N 2
+

36

κ2N 2
−

36

κN 2
− 72

(
1− κ

κN

)2
]
i

× hhSFαβ

∫
d4xd4θ θ̄2Tr(∂βα̇Γ̄ α̇

α ) Tr(ΦΦ̄)

+

[
36

N 3

1− κ

κ

(
−1 +

1

κ1
+

1

κ2
−

1

κ

)
− 72

(
1− κ

κN

)3
]
i

× hhSFαβ

∫
d4xd4θ θ̄2Tr(∂βα̇Γ̄ α̇

α ) TrΦ TrΦ̄ (6.7)

and

Γ
(1)
4 (h, h) = −36

(
1− κ

κN

)
hhSFαβ

∫
d4xd4θ θ̄2Tr([Γ̄βα̇, Γ̄

α̇
α ]{Φ, Φ̄})

−36

(
1− κ

κN

)2

hhSFαβ

∫
d4xd4θ θ̄2Tr([Γ̄βα̇, Γ̄

α̇
α ]Φ) TrΦ̄ (6.8)

We note that Γ
(1)
2 (h, h̄) + Γ

(1)
3 (h, h̄) gives a gauge-invariant correction to the quadratic

action. On the other hand, in Γ
′(1)
3 (h, h̄) the first three lines are not gauge invariant.

Possible gauge completions for these terms are contained in Γ
(1)
4 (h, h̄) if the corresponding

factors satisfy the following constraints

−
i

2

[
54

N
−

18

κN
−

18

κ1N
−

18

κ2N
− 36

1− κ

κN

]
i = −36

(
1− κ

κN

)
(6.9)

−
i

2

[
−

36

N 2
+

36

κ1N 2
+

36

κN 2
−

36

κ1κN 2

]
i = 0 (6.10)

−
i

2

[
−

36

N 2
+

36

κ2N 2
+

36

κN 2
−

36

κ2κN 2
− 36

(
1− κ

κN

)2
]
i = −36

(
1− κ

κN

)2

(6.11)

Having introduced two independent couplings κ1, κ2 we have the freedom to fix them in

order to satisfy this set of equations. It is easy to see that a non-trivial solution is given by

κ1 = 1 , κ2 = κ (6.12)

with no further requests on κ. Therefore, these conditions provide the right prescription for

computing (2b,2c)-type contributions to the effective action while preserving background

gauge invariance.

Given the solution (6.12) and recalling eq. (A.11) we conclude that the extra coupling

in front of the abelian quadratic action origins entirely from a rescaling of the antichiral

superfields.

Diagrams (2d). Diagrams of type (2d) are obtained by inserting in diagram (2a) one

t1 or one t3 vertex (the insertion of t2, t4, t5 vertices would give diagrams with vanishing

color factors). Expanding the propagators and considering only divergent terms linear in

the deformation parameter, it is easy to see that the diagram with the insertion of one t1
vertex gives divergent contributions of the form t1, t2 in SΓ̄, whereas the diagram with one

t3 vertex contributes to the t1, t3, t4, t5 structures. They all come out automatically in the

right gauge-invariant combinations.
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V

ΦΦ
(a)

V V

ΦΦ
(b)

Γα
 α

Φ∂βα Φ

κ-1

(c)

Γα
 α

∂βα ΦΦ

κ-1

(d)

V

∂βα Φ∇ α Φ

κ-1

(e)

∇ α V

Φ∂βα ∇ α Φ

κ-1

(f)

∇ α ∇ α V

∂βα ΦΦ

κ-1

(g)

Φ

ΦΦ

h

(h)

∇ α Φ

Φ∇ β Φ

h

(i)

Φ

ΦΦ

h

(j)

∂α
 α Φ

Φ∂βα Φ

h

(k)

∇ α Φ

Φ∇ β Φ

h3

(l)

∇ α Φ

V Φ

∇ β Φ

h3

(m)

∂ Γ - i/2 [Γ, Γ]

ΦΦ

ti

(n)

∂ Γ - i/2 [Γ, Γ]

V Φ

Φ

t1, t3, t4

(o)

∇ βα ∇ α ∇ α V

ΦΦ

ti

(p)

Figure 3. Vertices from the action (5.23) at most linear in the NAC parameter Fαβ . The (a,b,h,j)-

vertices are order zero in θ̄, the (e)-vertex is proportional to θ̄α̇ whereas the remaining vertices are

all proportional to θ̄2.

Diagrams (2e). Diagrams of type (2e) are obtained by inserting in diagram (2b) one of

the tj vertices. Expanding the propagators and considering only divergent terms linear in

the deformation parameter, from diagrams with t1, t2 vertices gauge-invariant structures

associated to t1 and t2 in SΓ̄ arise. From diagrams with the insertion of vertices t3, t4, t5
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the background structure proportional to ∂ α̇
β Γ̄αα̇ combines with the structure [Γ̄ α̇

β , Γ̄αα̇] to

give gauge-invariant divergent contributions of the form t1, . . . , t5.

Diagrams (2f). This kind of diagrams are obtained by contracting the (κ − 1) ver-

tices with a quantum gauge V -field (see figures (3e, 3f, 3g)) with the ordinary vertex in

figure (3a). Expanding the covariant propagators it is easy to see that they are either

vanishing or finite.

Diagrams (2g). This class of diagrams is constructed by contracting a t3, t4, t5-vertex

in figure (3p) with the ordinary vertex (3a) (diagrams with t1 and t2 vertices vanish for

color reasons). Explicit calculations reveal that nontrivial cancellations occur, so that no

divergent contributions arise proportional to t4 and t5, whereas a non-vanishing term is

generated by t3 which is automatically in the right linear combination to respect gauge

invariance. Precisely, it corrects t1, t3, t4, t5 couplings.

Diagrams (2h). These diagrams are obtained by contracting one vertex (3o) with the

ordinary vertex (3a). In all cases divergences arise when expanding the propagators at

lowest order (self-energy diagrams). They are automatically gauge invariant and correct

the t1, t3, t4, t5 couplings.

Diagram (2i). Finally, possible divergent contributions come from contracting the h̃3

vertex with the ordinary h̄-vertex in figure (3j). They come from expanding the propagators

up to the first order in Γ̄. Even in this case non-trivial cancellations occur and the final

result is the sum of non-vanishing, but gauge invariant contributions to the t1, t3, t4, t5
couplings.

The list of diagrams we have analyzed includes all possible divergent diagrams linear

in the deformation parameter. Any other divergence is necessarily proportional to F2 and

comes either from the expansion of the ∗-products in the previous diagrams or from new

diagrams constructed from F2-vertices in (5.23). Since we know that any single F2 term

is automatically gauge-invariant and appears in the action with its own coupling, we can

immediately conclude that the F2 sector of the action is one-loop renormalizable.

In conclusion, we have provided evidence that the general action (5.23) is multiplica-

tively renormalizable. Its renormalization can be then performed by setting

Φa
B = Z

1
2 Φa , Φ̄a

B = Z̄
1
2 Φ̄a

Φ0
B = Z

1
2 Φ0 , Φ̄0

B = Z̄
1
2 Φ̄0

(κ− 1)B = Zκ(κ− 1)

hB = Zhh , h̄B = Zh̄h̄

h̃3 B = Zh̃3
h̃3

h
(j)
3 B = Z

h
(j)
3

h
(j)
3 , h

(j)
4 B = Z

h
(j)
4

h
(j)
4 , h

(j)
5 B = Z

h
(j)
5

h
(j)
5

tn B = Ztntn n = 1, . . . , 5

h̃
(j)
6 B = Z

h̃
(j)
6

h̃
(j)
6

ln B = Zlnln n = 1, . . . , 12 (6.13)
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where we have assigned the same renormalization function to the abelian and non-abelian

scalar superfields.

We consider for instance the nontrivial renormalization of the quadratic matter action,

first two lines of eq. (5.24). At one-loop, in terms of renormalized superfields, we can write

Γ1loop →

∫
d4xd4θ

{(
(ZZ̄)

1
2 − 1 +

a

ǫ

)
Tr
(
Φ̄ ∗ Φ

)
+ (6.14)

(
(ZZ̄)

1
2Zκ−1+

b

ǫ

)
κ− 1

N

[
TrΦ̄∗TrΦ+2iθ̄2FαβTr(Γ̄ α̇

α ∗ Φ̄) ∗Tr(∂βα̇Φ)

+2iθ̄2FαβTr(Γ̄ α̇
α ∗ Φ) ∗ Tr(∂βα̇Φ̄)

]}

where, from eqs. (6.3), (6.6) we read

a =
1

(4π)2

[
−2g2N + 9hh̄

(
N + 4

1− κ

κN

)]

b =
1

(4π)2
1

κ− 1

[
2g2N + 9hh̄

(
1 + 2

(
1− κ

κN

)2
)]

(6.15)

In order to cancel divergences we can set

Z = Z̄ = 1−
1

(4π)2
1

ǫ

[
−2g2N + 9hh̄

(
N + 4

1− κ

κN

)]
(6.16)

Zκ = 1 +
1

(4π)2
1

ǫ

[
−2g2N

κ

κ− 1
+ 9hh̄N

(
κ− 2

κ− 1

)
− 18

hh̄

κ2N
(2κ2 − κ− 1)

]

Different choices with Z 6= Z̄ are also allowed.

Renormalization of the rest of the couplings then follows, accordingly.

7 Conclusions

In this paper we have studied the problem of the renormalizability for nonanticommuta-

tive N = 1/2 SYM theories in the presence of interacting matter. The introduction of

a superpotential for (anti)chiral superfields complicates the investigation of the quantum

properties of the gauge theory, not only from a technical point of view. In fact, at a first

sight the non-trivial interplay between partial breaking of supersymmetry, gauge invariance

of the action and renormalization procedure leads to drastic consequences for the theory:

In NAC geometry only SU(N )⊗U(1) gauge theories are well defined and, as in the ordinary

case, the renormalization of the kinetic term requires a different renormalization function

for the SU(N ) and U(1) wave-functions. Consequently, superpotential terms proportional

to the abelian fields need appear with different coupling constants. In superspace formal-

ism this can be realized by generalizing the single-trace (anti)chiral interaction to contain

different trace structures, each one with its own coupling. However, the addition of multi-

trace terms, while completely harmless in the ordinary SYM theories, in the NAC case

affects the theory in a non-trivial way. In fact, these terms are no longer gauge singlets and

require suitable completions which break explicitly the residual N = 1/2 supersymmetry.
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The way-out we have proposed amounts to re-establish perfect equivalence between

SU(N ) and U(1) wave-function renormalizations by multiplying the abelian quadratic term

by an extra coupling constant. As a consequence, a single-trace superpotential is allowed

which respects N = 1/2 supersymmetry and supergauge invariance. Basically, we have

shifted the problem of deforming the action from the superpotential to the Kǎhler potential

or, in other words, from an integral on chiral variables to an integral on the whole super-

space. This has the nice effect to leave the residual N = 1/2 supersymmetry unbroken. It

is important to stress that in contradistinction with the ordinary case where rescaling the

abelian kinetic term or suitably rescaling the superpotential couplings lead to equivalent

theories, in the NAC case this is no longer true. In one case we obtain a consistent N = 1/2

theory whereas in the other case we loose completely supersymmetry. The ultimate cause

is the non-trivial NAC gauge transformations undergone by the abelian superfields.

Having solved the main problem of adding a matter cubic superpotential we have

studied the most general divergent structures which could arise at loop level selecting them

on the basis of dimensional considerations and global symmetries. We have then proposed

the action (5.23) as the most general renormalizable gauge-invariant N = 1/2 deformation

of the ordinary SYM field theory with interacting matter. The next steps should be the

complete study of one-loop renormalization, the computation of the β-functions and the

implementation of the massive case. Moreover, strictly speaking our results hold only

at one-loop. Higher loop calculations would be necessary to further confirm the good

renormalization properties of our action.

Generalizing in an obvious way our construction to include more than one (anti)chiral

superfields would lead to a consistent NAC generalization of the N = 4 SYM. This would

be an important step towards clarifying the stringy origin of NAC deformations and de-

formations of the AdS/CFT correspondence. In particular, it would be nice to investigate

how robust properties of N = 4 SYM like finiteness and integrability might be affected by

NAC deformations.

Finally, our approach could be easily applied to the abelian three-field Wess-Zumino

model studied in [23].
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A Feynman rules for the general action (5.23)

In this appendix we apply the NAC background field method to the action (5.23) and

derive the Feynman rules necessary for calculations of section 6.
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Gauge sector. We first concentrate on the gauge sector. As discussed in details in

ref. [16] and reviewed in section 2, with the convenient choice of the gauge-fixing ac-

tion (2.13), in Feynman gauge the covariant gauge propagators are

〈V aV b〉 = g2

(
1

�̂

)ab

〈V 0V 0〉 = g2

{
1

�̃

[
1 +

(
g2

g2 + g2
0

)
∇∇

α̇
∗ ∇∇2 ∗ ∇∇α̇ ∗

1

�̃

]}00

(A.1)

where �̂, �̃ have been defined in (2.15), (2.16) in terms of �cov. On a generic superfield in

the adjoint representation of SU(N )⊗U(1) we have

(�cov ∗ φ)A =

(
1

2
∇

αα̇
∗ ∇αα̇ ∗ φ

)A

=

(
�φ− i[Γ̄αα̇, ∂αα̇φ]∗ −

i

2
[(∂αα̇Γ̄αα̇), φ]∗ −

1

2
[Γ̄αα̇, [Γ̄αα̇, φ]∗]∗

)A

≡ �
AB
cov ∗ φ

B (A.2)

Using the general NAC rule

[F,G]A∗ =
1

2
ifABC{FB , GC}∗ +

1

2
dABC [FB , GC ]∗ (A.3)

valid for any couple of field functions in the adjoint representation of the gauge group, and

expanding the ∗-product we find

�
AB
cov = � δAB + fACBΓ̄C αα̇∂αα̇ + idACBFαβ(∂αΓ̄C γγ̇)∂β∂γγ̇ −

1

2
fACBF2(∂2Γ̄C αα̇)∂2∂αα̇

+ · · · (A.4)

Only the first two terms in (A.2) have been explicitly indicated. The rest can be treated

in a similar manner.

The 1

�̂
and 1

�̃
propagators can be expanded in powers of the background fields. We

formally write

1

�̂
=

1

�cov
+

1

�cov
∗
(
iW̃α∇α + iW

α̇
∗ ∇α̇

)
∗

1

�̂

1

�̃
=

1

�cov
+

1

�cov
∗

(
iW̃α∇α −

i

2
(∇

α̇
∗W α̇)

)
∗

1

�̃
(A.5)

Expanding the right hand side we obtain terms proportional to W̃α,W α̇ and terms propor-

tional to the bosonic connections coming from 1/�cov. As follows from dimensional con-

siderations and confirmed by direct inspection, terms proportional to the field strengths

never enter divergent diagrams as long as we focus on contributions linear in the NAC

parameter. Therefore, at this stage we can neglect them. Using the expansion (A.4) we
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then find
(

1

�̂

)ab

,

(
1

�̃

)00

→

(
1

�cov

)AB

(A.6)

≃
1

�
δAB −

1

�
fACB Γ̄C αα̇ ∂αα̇

1

�
−

1

2

1

�
fACDfDEB Γ̄C αα̇Γ̄E

αα̇

1

�

−
1

�
idACB Fαβ(∂αΓ̄C γγ̇) ∂β∂γγ̇

1

�
+

1

2

1

�
fACBF2(∂2Γ̄C αα̇) ∂2∂αα̇

1

�
+ · · ·

In this expression we recognize the ordinary bare propagator 1/� plus a number of gauge

interaction vertices.

Further interactions come from the expansion of the remaining terms in (3.1) or (3.2).

Their explicit expression can be found in appendix E of [16].

Matter sector. We now derive propagators and interaction vertices for the action

Smatter + SΓ̄ + SW in (5.23). Since in this paper we are primarily interested in computing

divergent contributions linear in the NAC parameter, we restrict our analysis to Feynman

rules which contribute to this kind of terms. In particular, we do not take into account

vertices proportional to F2.

We first concentrate on the calculation of the chiral propagators. As given in eq. (5.24)

the full covariant scalar quadratic term is
∫
d4xd4θ

{
Tr
(
Φ̄Φ
)

+
κ− 1

N
TrΦ̄TrΦ

}
(A.7)

which can be expanded in terms of the background covariantly (anti)chiral fields (2.12) as
∫
d4xd4θ

{
Tr(Φ̄ ∗ eV ∗Φ ∗ e−V ) +

κ− 1

N
Tr(Φ̄)Tr(eV ∗Φ ∗ e−V )

}

=

∫
d4xd4θ

{
Tr

(
Φ̄Φ + Φ̄[V,Φ]∗ +

1

2
Φ̄[V, [V,Φ]∗]∗ + . . .

)

+
κ− 1

N
Tr(Φ̄)Tr

(
Φ + [V,Φ]∗ +

1

2
[V, [V,Φ]∗]∗ + . . .

)}
(A.8)

We perform the quantum-background splitting

Φ→ Φ + Φq, Φ̄→ Φ̄ + Φ̄q (A.9)

and concentrate on the evaluation of the quadratic functional integral
∫
DΦqDΦ̄q e

R

d4xd4θ {Tr(Φ̄qΦq)+ κ−1
N

TrΦ̄qTrΦq} (A.10)

In order to deal with a simpler integral we make the change of variables

ΦA
q → Φ

′A
q = (Φa

q , κ1Φ
0
q) , Φ̄A

q → Φ̄
′A
q = (Φ̄a

q , κ2Φ̄
0
q) (A.11)

where κ1 and κ2 are two arbitrary constants satisfying κ1κ2 = κ. The functional inte-

gral (A.10) then takes the standard form
∫
DΦ′qDΦ̄′q e

R

d4xd4θ TrΦ̄′
qΦ

′
q (A.12)
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We stress that the redefinition (A.11) in terms of two independent couplings is admissible

because we are working in Euclidean space where chiral and antichiral fields are not related

by complex conjugation.

Adding source terms

Tr

∫
d4xd2θ jΦ′q + Tr

∫
d4xd2θ̄ Φ̄′qj (A.13)

= Tr

∫
d4xd4θ

(
j ∗

1

�+
∗ ∇∇2Φ′q + Φ̄′q ∗

1

�−
∗ ∇∇

2
∗ j

)

with �± defined in (2.21), and taking into account the complete action the quantum

partition function reads

Z(j, j) = e
Sint(

δ
δj

, δ

δj
)
∫
DΦ′qDΦ̄′q exp Tr

∫
d4xd4θ

[
Φ̄′qΦ

′
q (A.14)

+j ∗
1

�+
∗ ∇∇2Φ′q + Φ̄′q ∗

1

�−
∗ ∇∇

2
∗ j

]

Here Sint contains all gauge-scalar fields interaction vertices in (A.8) plus interactions

coming from the rest of terms in Smatter + SΓ̄ + SW .

We can perform the Gaussian integral in (A.15) by standard techniques, obtaining the

NAC generalization of the usual superspace expression [20]

Z = ∆ ∗ e
Sint(

δ
δj

, δ

δj
)
exp

(
−

∫
d4xd4θ j ∗

1

�−
∗ j

)
(A.15)

where ∆ is the functional determinant

∆ =

∫
DΦ′qDΦ̄′q exp Tr

∫
d4xd4θ Φ̄′qΦ

′
q (A.16)

which contributes to the gauge effective action [16].

From the expression (A.15) we can read the covariant propagators for prime superfields

〈Φ′Aq Φ̄′Bq 〉 = −

(
1

�−

)AB

(A.17)

which, in terms of the original Φ, Φ̄ superfields gives

〈Φa
qΦ̄

b
q〉 = −

(
1

�−

)ab

(A.18)

〈Φ0Φ̄b〉 = −
1

κ2

(
1

�−

)0b

(A.19)

〈ΦaΦ̄0〉 = −
1

κ1

(
1

�−

)a0

(A.20)

〈Φ0Φ̄0〉 = −
1

κ

(
1

�−

)00

(A.21)
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The expansion of the scalar covariant propagators can be performed following a pre-

scription similar to the one used for the gauge propagator. We can formally write

1

�−
=

1

�cov
+

1

�cov
∗

(
iW

α̇
∗ ∇α̇ +

i

2
(∇

α̇
∗W α̇)

)
∗

1

�−
(A.22)

Since terms proportional to the field strengths never enter divergent diagrams linear in

Fαβ , we can neglect them and write

(
1

�−

)AB

→

(
1

�cov

)AB

(A.23)

≃
1

�
δAB −

1

�
fACB Γ̄C αα̇ ∂αα̇

1

�
−

1

2

1

�
fACDfDEB Γ̄C αα̇Γ̄E

αα̇

1

�

−
1

�
idACB Fαβ(∂αΓ̄C γγ̇) ∂β∂γγ̇

1

�
+

1

2

1

�
fACBF2(∂2Γ̄C αα̇) ∂2∂αα̇

1

�
+ · · ·

The first term is diagonal in the color indices and gives the ordinary bare propagator. The

rest provides interaction vertices between scalars and gauge superfields.

From the expansion (A.23) it is clear that the mixed propagators (A.19), (A.20) are

always proportional to the NAC parameter, according to the fact that in the N = 1 limit

they need vanish. It follows that the dependence on the κ1 and κ2 couplings is peculiar of

the NAC theory, whereas in the ordinary limit only their product κ survives.

Additional interaction terms are contained in Sint and arise from the background field

expansion of the full action Smatter +SΓ̄ +SW . We now describe the correct way to obtain

such vertices concentrating only on the ones at most linear in Fαβ.

We begin by considering Smatter. From the quadratic action
∫
d4xd4θ TrΦ̄Φ, after the

expansion (A.8) and the shift (A.9) we obtain (3a,3b)-type vertices in figure 3 where V is

quantum and Φ and/or Φ̄ are background. Expanding the ∗-products ordinary vertices

plus vertices proportional to Fαβ and F2 arise.

We then consider the (κ− 1) terms in (5.24)

κ− 1

N

∫
d4xd4θ

[
TrΦ̄ ∗ TrΦ (A.24)

+ 2iθ̄2FαβTr(Γ̄ α̇
α ∗ Φ̄) ∗ Tr(∂βα̇Φ) + 2iθ̄2FαβTr(Γ̄ α̇

α ∗Φ) ∗Tr(∂βα̇Φ̄)
]

We expand the (anti)chiral superfields as

Φ→ Φ + Φq + [V,Φ + Φq]∗ +
1

2
[V, [V,Φ + Φq]∗]∗ , Φ̄→ Φ̄ + Φ̄q (A.25)

and, at the same order in V , the gauge connection as

Γ̄αα̇ → Γ̄αα̇ −∇α

[
∇∇α̇, V

]
∗
+

1

2
∇α

[[
∇∇α̇, V

]
∗
, V
]
∗

(A.26)

Collecting the various terms we generate (3c,3d)-vertices in figure 3 with background

gauge connections and quantum matter plus (3e,3f,3g)-vertices with quantum gauge and Φ

or Φ̄ background.
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As a nontrivial example, we derive in details the contributions (3e,3f,3g). Forgetting

for a while the superspace integration and the overall coupling constant and writing ∂α =

∇α − iθ̄
α̇∂αα̇, from the first term in (A.24) we have

Tr([V,Φ]∗)TrΦ̄ → −Fαβ Tr([∂αV, ∂βΦ]) TrΦ̄ (A.27)

→ −2iFαβ θ̄α̇ Tr(V∇αΦ)Tr∂βα̇Φ̄− 2Fαβ θ̄2 Tr(∂ α̇
α V Φ)Tr∂βα̇Φ̄

where superspace total derivatives have been neglected and Φ, Φ̄ stand for either quantum

or background.

Using the expansion (A.26) the second term in (A.24) gives a contribution of the form

2iFαβ θ̄2Tr(Γ̄ α̇
α Φ̄)Tr(∂βα̇Φ)→ −2iFαβ θ̄2Tr([∇

α̇
, V ] Φ̄)Tr(∂βα̇∇αΦ) (A.28)

Similarly, the third term in (A.24) gives

2iFαβ θ̄2Tr(Γ̄ α̇
α Φ)Tr(∂βα̇Φ̄)→ 2iFαβ θ̄2

{
Tr(Γ̄ α̇

α [V,Φ]) Tr(∂βα̇Φ̄)

−Tr(∇αD
α̇
V Φ)Tr(∂βα̇Φ̄) + Tr([V, Γ̄ α̇

α ]Φ)Tr(∂βα̇Φ̄)− iTr([Γ̄α̇,∇αV ]Φ)Tr(∂βα̇Φ̄)
}

= 2Fαβ θ̄2Tr(∂ α̇
α V Φ)Tr(∂βα̇Φ̄) + 2iFαβ θ̄2 Tr([∇

α̇
,∇αV ]Φ)Tr(∂βα̇Φ̄) (A.29)

Summing the three contributions a nontrivial cancellation occurs between the second term

in (A.27) and the first term in (A.29) and we are left with

κ− 1

N

∫
d4xd4θ

{
−2iFαβ θ̄α̇ Tr(V∇αΦ)Tr∂βα̇Φ̄− 2iFαβ θ̄2Tr([∇

α̇
, V ] Φ̄)Tr(∂βα̇∇αΦ)

+ 2iFαβ θ̄2 Tr([∇
α̇
,∇αV ]Φ)Tr(∂βα̇Φ̄)

}
(A.30)

which correspond to the three vertices (3e, 3f, 3g).

The rest of terms in the Smatter can be easily treated by the shift (A.25). Neglecting

F2 contributions only the superpotential and the h̃3 term survive and lead to pure matter

vertices of the form (3h, 3i, 3j, 3k, 3l) and the mixed vertex (3m).

We now turn to SΓ̄ and briefly sketch the quantization of tj vertices. At linear order in

the NAC parameter we can forget the ∗-product in the commutators of t3, t4, t5 terms. We

perform the shift (A.25) on the (anti)chirals and (A.26) on the connection. In particular,

for the gauge invariant linear combination appearing in t3, t4, t5 terms we have

∂βα̇Γ̄ α̇
α −

i

2
[Γ̄βα̇, Γ̄

α̇
α ] −→ ∂βα̇Γ̄ α̇

α −
i

2
[Γ̄βα̇, Γ̄

α̇
α ]−∇∇βα̇∇∇α∇∇

α̇
V (A.31)

Collecting only the contributions which may contribute at one-loop we produce the (3n)

vertex in figure 3 where matter is quantum and (3o, 3p) vertices where Φ or Φ̄ are quantum.

We note that they all exhibit a gauge-invariant background dependence.
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[7] S. Ferrara, M.A. Lledó and O. Macia, Supersymmetry in noncommutative superspaces,

JHEP 09 (2003) 068 [hep-th/0307039] [SPIRES].
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